Improvement of MIMO Channel Capacity Using Block-wise Controlled Transmit-Array Antenna

Yuta Takahashi #, Naoki Honma, and Yuto Suzuki
(#t2312026@iwate-u.ac.jp, Graduate School of Engineering, Iwate University, Japan)

Introduction

- **Environment with limited paths**
 - Keyhole effect increases spatial correlation
 - High propagation loss degrades SNR

- **Our previous work**
 - Keyhole effect increases spatial correlation

- **Proposed Mechanism and Configuration of Transmit-array**
 - By controlling load impedance,
 - SNR can be improved by controlling path directions
 - Spatial correlation can be decreased by path dispersion

- **Numerical Result**
 - Enhanced channel capacity
 - Large number of antennas realize high channel capacity

Analysis condition

<table>
<thead>
<tr>
<th>Simulation method</th>
<th>Raytracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Antenna element (Tx / Rx)</td>
<td>Dipole antenna</td>
</tr>
<tr>
<td>Number of antenna (Tx x Rx)</td>
<td>2x2 (MIMO)</td>
</tr>
<tr>
<td>Reactance value</td>
<td>-100 ≤ X ≤ 10</td>
</tr>
<tr>
<td>Optimum method</td>
<td>Steepest gradient method</td>
</tr>
</tbody>
</table>

Conclusion

- **Transmit-array with square division type (n=4):**
 - 1% value of channel capacity can be improved by 7.2 bits/s/Hz

- **Simplified control system is needed:**
 - Control system becomes simpler than that with fully controlled structure