Experimental Evaluation of Matching Method Based on Image Impedances for Near Field MIMO

Kazuki Ishii

■ Short range communication

Need to high data-rate in short range communication for HD video transmission etc. Near Field MIMO(Multiple-Input Multiple-Output)

Multiple antennas technology \times Near field electromagnetic coupling $D < \lambda$ Whigh channel capacity in short range due to high SNR*2 and low spatial correlation[1]

**IMN : Matching Network **2SNR : Signal Noise to Ratio

Near Field MIMO(Multiple-Input Multiple-Output)

Near field electromagnetic coupling

**Entropy Signal Noise to Ratio

**ZIN \rightarrow ZIN

**Entropy Signal Noise to Ratio

Near field electromagnetic coupling

**AMN : Matching Network **2SNR : Signal Noise to Ratio

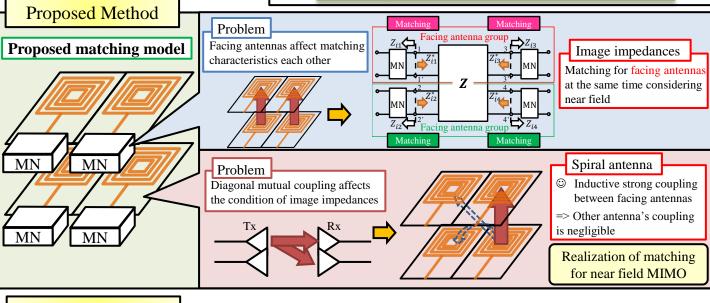
Near field electromagnetic coupling

**Entropy Signal Noise to Ratio

Near field electromagnetic coupling

**Entropy Signal Noise to Ratio

Near field electromagnetic coupling


**Entropy Signal Noise to Ratio


Near field electromagnetic coupling

**Entropy Signal Noise to Ratio

**Entropy

Matching method for near field MIMO is needed

 Frequency
 150 MHz

 Antenna & MN substrate
 FR-4

 Antenna distance
 8.4 mm

 Element spacing
 65 mm

 Transmitting power
 0 dBm

 Noise power
 - 90 dBm

Reflection characteristics < -10 dB

Channel capacity is improved at the center frequency

Proposed matching method is effective in enhancing channel capacity of near field MIMO

